Bile

Bile or gall is a bitter-tasting, dark green to yellowish brown fluid, produced by the liver of most vertebrates, that aids the process of digestion of lipids in the small intestine. In many species, bile is stored in the gallbladder and upon eating is discharged into the duodenum. Bile is a composition of the following materials: water (85%), bile salts (10%), mucus and pigments (3%), fats (1%), inorganic salts (0.7%) and cholesterol (0.3%).

In the medical theories prevalent in the West from Classical Antiquity up to the Middle Ages, the body's health depended on the equilibrium between four "humors" or vital fluids: blood, phlegm, "yellow bile" (or choler) and "black bile". Excesses of the last two humors were supposed to produce aggression and depression, respectively; and the Greek names for them gave rise to the English words "cholera" and "melancholia". Those same theories explain the derivation of the English word "bilious" from "bile", and the meaning of "gall" in English as "exasperation" or "impudence".

Contents

Physiological functions

Bile acts to some extent as a surfactant, helping to emulsify the fats in the food. Bile salt anions have a hydrophilic side and a hydrophobic side, and therefore tend to aggregate around droplets of fat (triglycerides and phospholipids) to form micelles, with the hydrophobic sides towards the fat and hydrophilic towards the outside. The hydrophilic sides are positively charged due to the lecithin and other phospholipids that compose bile, and this charge prevents fat droplets coated with bile from re-aggregating into larger fat particles. Ordinarily, the micelles in the duodenum have a diameter of around 14-33 μm.

The dispersion of food fat into micelles thus provide a largely increased surface area for the action of the enzyme pancreatic lipase, which actually digests the triglycerides, and is able to reach the fatty core through gaps between the bile salts. A triglyceride is broken down into two fatty acids and a monoglyceride, which are absorbed by the villi on the intestine walls. After being transferred across the intestinal membrane, fatty acids are reformed into triglycerides, then absorbed into the lymphatic system through lacteals. Without bile salts, most of the lipids in the food would be passed out in feces, undigested.

Since bile increases the absorption of fats, it is an important part of the absorption of the fat-soluble substances, such as the vitamins D, E, K and A.

Besides its digestive function, bile serves also as the route of excretion for bilirubin, a byproduct of red blood cells recycled by the liver. Bilirubin derives from haemoglobin by glucuronidation.

The alkaline bile also has the function of neutralizing any excess stomach acid before it enters the ileum, the final section of the small intestine. Bile salts also act as bactericides, destroying many of the microbes that may be present in the food.

Bile soap

Bile from slaughtered animals can be mixed with soap. This mixture, called bile soap,[1] can be applied to textiles a few hours before washing and is a traditional and rather effective method for removing various kinds of tough stains.

Abnormal conditions associated with bile

Principal bile acids

See also

References

Notes
  1. ^ Newton, W. (1837). "The invention of certain improvements in the manufacture of soap, which will be particularly applicable to the felting of woollen cloths.". The London Journal Of Arts And Sciences; And Repertory Of Patent Inventions IX: 289. http://www.google.co.uk/books?vid=0MfyvmoTsdK02ZeP86W&id=GhMAAAAAMAAJ&pg=RA19-PA291&lpg=RA19-PA291&dq=bile+soap&as_brr=1. Retrieved 2007-02-08. 
  2. ^ Barabote RD, Tamang DG, Abeywardena SN, et al. (2006). "Extra domains in secondary transport carriers and channel proteins". Biochim. Biophys. Acta 1758 (10): 1557–79. doi:10.1016/j.bbamem.2006.06.018. PMID 16905115. 
Bibliography

External links